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Correlation analysis in clinical and experimental studies

Análise de correlação em estudos clínicos e experimentais

Hélio Amante Miot1

1 Universidade Estadual Paulista – UNESP, Faculdade de Medicina de Botucatu, Departamento de Dermatologia e Radioterapia, Botucatu, SP, Brasil.
Financial support: None.
Conflicts of interest: No conflicts of interest declared concerning the publication of this article.
Submitted: February 09, 2018. Accepted: February 12, 2018.

The study was carried out at Departamento de Dermatologia e Radioterapia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), 
Botucatu, SP, Brazil.

It is common for researchers conducting clinical 
or biomedical studies to be interested in investigating 
whether the values of two or more quantitative variables 
change in conjunction in a given individual or object 
of study. In other words, whether when the value of 
one variable increases, the value of another tends to 
increase/ or, inversely, reduce, progressively. There 
are many different statistical tests that explore the 
intensity and direction of this mutual behavior of 
variables, known as correlation tests.1,2

The first step in analyzing correlations between two 
quantitative variables should be to look at a scatter 
plot, in order to discern whether there is a gradual 
variability between the sets of variables, whether this 
variation is monotonic (predominantly increasing 
or decreasing), if it follows a proportional tendency 
(linear), and whether the underlying distribution of 
the data is normal.2-4 Different combinations of these 
premises indicate a need for different techniques for 
correlation analysis.

Figure 1 illustrates the distribution of values of 
four hypothetical variables (V1, V2, V3, and V4), 
which exhibit data that follow a normal distribution 
(Shapiro-Wilk, p > 0.32).

Variables V1 and V2 exhibit simultaneously increasing 
values, which are distributed around an underlying 
imaginary (ideal) straight line, which describes the 
trajectory of the data. It can be stated that there is 
a positive linear correlation between V1 and V2. 
For example, Rossi et al. identified a strong positive 
correlation (ρ = 0.82; p < 0.01) between cores on the 
Venous Symptoms Clinical Severity Scale and pain 
in chronic venous disease.5

In contrast, variables V1 and V3 exhibit antagonistic 
behavior: when the values of one increase, the values 
of the other reduce. It can be stated that there is a 
negative linear correlation between V1 and V3, just 
as Ohki and Bellen identified a moderate negative 
correlation (ρ = -0.65; p < 0.01) between average 

regional temperature and the incidence of venous 
thrombosis.6

It can also be observed that the values for the 
correlation between V1 and V3 are closer to the 
imaginary straight line than the values for the correlation 
between V1 and V2. This invites the conclusion that 
the relationship between the values of the variables 
V1 and V3 is stronger than the relationship between 
V1 and V2, even though the directions are opposite.

Comparisons of the data for V4, whether with 
V1, V2, or V3, do not reveal gradually increasing 
or decreasing behavior. This leads to the conclusion 
that V4 does not exhibit a correlation with the other 
variables.

The most widely-used technique for evaluating 
the correlation between two quantitative variables is 
Pearson’s product-moment correlation coefficient, or 
Pearson’s r, which requires that both samples follow a 
normal distribution and that the relationship between 
the two variables is linear.2,7 Failure to adhere to these 
prerequisites leads to erroneous conclusions, even 
when working with large sample sizes.

However, it is very common that samples of 
clinical and demographic data do not follow a normal 
distribution (for example, the distributions of income, 
quality of life indexes, disease severity indexes, years 
of study, and number of children). The most widely 
used options for investigating correlations between 
variables that do not exhibit normal distributions are 
the Spearman rank order correlation and the Kendall 
rank correlation coefficient (Tau-b), which substitute 
the original data for their ordered ranks.2,7,8 These 
methods are also used in cases in which at least one of 
the variables has ordinal characteristics (for example, 
functional class, educational level, cancer staging, 
social class).

Another advantage of using the Spearman and 
Kendall nonparametric tests is that they are not 
restricted to linear correlations, as long as they exhibit 
monotonic behavior. In other words, they must exhibit 
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a gradual relationship in the same direction (rising 
or falling) for the whole domain of the data studied.

In Figure 2, it can be observed that there is no 
direct proportionality (linear) between the data for 
V1 and V5; rather there is an increase that is apparently 
exponential. Since the variation is monotonic (the data 
for V1 increase as a function of V5), the Spearman 
and Kendall coefficients can be used to estimate the 
correlation. In this example, to use the Pearson’s 
coefficient, it will be necessary to log transform 
the data to achieve a certain linearity of correlation 
(Figure 2: V1 x V6). It should be noted that the ρ and 
τ coefficients give the same resultant values for the 

correlations V1 vs. V5 and V1 vs. V6, since V6 is a 
transformation of V5 into monotonic data.

In biomedical sciences, the Spearman coefficient 
(ρ or rho) is the most widely used for evaluating the 
correlation between two quantitative variables, probably 
because it is similar to the Pearson method, once the 
data have been substituted for their ordered ranks. 
However, care should be taken when generalizing 
conclusions of interpretations of the correlation 
between the values of the ranks of data from the 
variables and the original data.

In contrast, the Kendall Tau-b coefficient (τ or tb), 
has mathematical properties that make it more robust 
to extreme data (outliers), give it a greater capacity for 

Figure 1. Bar graphs, scatter plots, and correlation coefficients (r: Pearson, ρ: Spearman, and τ: Kendall Tau-b) for four hypothetical 
quantitative variables V1, V2, V3, and V4 (n = 40).
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populational inference and a smaller estimation error. 
While significance (p-value) and direction (+ or -) are 
similar to those of the Spearman method, the coefficient 
returns less extreme values and interpretation is different, 
since it signifies the percentage of observed pairs that 
take the same direction in the sample (agreement) 
minus the pairs that do not agree. For example, a 
τ coefficient of 0.60 signifies that 80% of pairs agree, 
while 20% disagree (τ = 0.80 - 0.20 = 0.60).9

Transformation of data (for example, logarithmic, 
square root, 1/x) in order to obtain a normal distribution 
to enable Pearson’s coefficient to be tested is a valid 
option for samples with asymmetrical data distributions 
(Figure 2: V1 x V6). However, it should be borne in 
mind that, in common with techniques that employ 
ordered ranks, transformation of data alters the scale 

between measures and impacts on direct interpretation 
of the measures of effect.7

The magnitude of the effect of the correlation 
between two or more variables is represented by 
correlation coefficients, which take values from 
-1 to +1, passing through zero (absence of correlation). 
Positive coefficients (r > 0) indicate a direct relationship 
(Figure 1: V1 x V2) between variables; while negative 
coefficients (r < 0) indicate an inverse correlation 
(Figure 1: V1 x V3 and V2 x V3).

Each correlation test has its own coefficient, 
demanding its own interpretation. In general, for the 
coefficients Pearson’s r and Spearman’s ρ, values from 
0 to 0.3 (or 0 to -0.3) are biologically negligible; those 
from 0.31 to 0.5 (or -0.31 to -0.5) are weak; from 
0.51 to 0.7 (or -0.51 and -0.7) are moderate; from 
0.71 to 0.9 (or -0.71 to 0.9) are strong correlations; 
and correlations > 0.9 (or < -0.9) are considered 
very strong.8

One peculiarity of Pearson’s r coefficient is 
that the square of its value provides an estimate of 
the percentage of variability in the values of one 
variable that is explained by the variability in the 
other. For example, a coefficient of r = 0.7 indicates 
that 49% of the variability of one variable can be 
explained by, or is followed by, the variation in the 
values of the other, in the sample tested.

In clinical and biomedical studies, the majority of 
coefficients with biological significance fall in the 
range of 0.5 to 0.8 (or -0.5 to -0.8). This is the result 
of errors of measurement, laboratory techniques, or 
variation of instruments, which affect the precision 
of measurements, and also, and primarily, because 
biological phenomena are affected by multifactorial 
influences and complex interactions, in which the 
variation of a single variable cannot totally explain 
the behavior of another.2

Tests of the significance of a correlation between 
quantitative variables are based on the null hypothesis 
that there is no correlation between the variables 
(r = 0), which makes the p-value subject to influence 
both from the dimension of the effect and from the 
sample size. This means that caution is necessary when 
interpreting coefficients that result in a weak correlation 
(r < 0.3), but have highly significant p-values, caused 
by overly-large sample sizes. Calculation of sample 
sizes for analysis of correlations has been explored 
in an earlier edition of this periodical.10

Correlation coefficients have inferential properties 
and, in scientific texts, should preferably be expressed 
with their 95% confidence intervals and significance 
(p-value), for example: ρ = 0.76 (95%CI 0.61-0.91), 
p < 0.01.11,12 In the case of multiple comparisons, 
coefficients can be shown on their own, in the form of a 

Figure 2. Scatter plots and correlation coefficients for the 
hypothetical variables V1, V5 and V6 (n = 40), where V6 is the 
result of log transformation of V5 (V6 = log

10
 V5).
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matrix, and with their significance indicated to facilitate 
interpretation of the data, as Brianezi et al. presented 
the 28 correlations between seven histological 
parameters in a single table.13 Special cases involving 
hundreds or thousands of correlations may demand 
graphical representation techniques, such as the 
color heatmaps often used in genome studies, just 
as Hsu et al. represented 4,930 correlations between 
(85x58) genomic and metabolomic variables.14

In the case of ordinal data with few categories 
(for  example, satisfaction scores, quality of life items, 
socioeconomic status), investigations based on the 
polychoric test of correlation may be more robust 
(smaller type I errors) than using the Spearman and 
Kendall tests.15 Although rarely used, there are also 
methods for assessing the correlations between variables 
of a categorical nature (for example, Cramér’s V 
coefficient) and between dichotomous and quantitative 
variables (for example, the point-biserial correlation 
coefficient), but these approaches are beyond the 
scope of this text.7

In special situations in which linear correlations 
between different variables must be analyzed in 
conjunction (for example, questionnaire items) in 
order to understand the overall variation in conjunction 
of the variables, analysis of the correlation between 
“n” variables can be assessed using the consistency 
type Intraclass Correlation Coefficient (ICC). There 
are different ways to analyze ICCs, which result in 
indicators of different magnitudes.16 An ICC (random 
or two-factor mean, mean measures) returns the same 
value as Cronbach’s α coefficient, used to measure 
the internal consistency of scales.17

The identification of a significant correlation 
between two or more variables should be interpreted 
with caution, since statistical analysis does not provide 
evidence of direct dependence or even of causality 
between the variables, just that they tend to vary in 
conjunction.1,18,19 However, despite the risk of fallacious 
conclusions of causality or on the basis of results of 
correlations between variables, correlation tests are 
important exploratory techniques for investigation 
of associations between the behavior of groups of 
variables, facilitating construction of hypothetical 
models that should then be confirmed by means 
of dedicated experiments. Indeed, this occurs with 
ecological clinical studies that often employ correlation 
techniques for data analysis and provide a basis for 
subsequent investigations of the phenomena indicated 
by correlations between indicators and population 
groups.20-22 The same applied to genome-wide and 
proteomic studies, considered exploratory, which 
study the patterns of correlations of findings with 

clinical variables in order to indicate models for later 
confirmation.19,23

Indeed, performing multiple correlation tests 
on a sequence of variables increases the chances 
of identifying, by chance, correlations described 
as “spurious”, which should be evaluated in terms 
of their biological plausibility and confirmed later 
using appropriate investigation techniques. Use of 
techniques for correction of p-values adjusted for 
multiple correlations is always recommended in these 
conditions.7,19,24-27

Another limitation of an inferential nature in 
correlation analyses is rooted in their incapacity for 
extrapolation of conclusions to different data intervals 
or different populations from those studied.

Correlation analyses were not developed a priori with 
the purpose of predicting values or for inference of the 
participation of multiple variables in the explanation of 
a phenomenon and there are regression or multivariate 
analysis techniques that can be used for this purpose.7 
Although there are partial correlation techniques 
that adjust the correlation values for the behavior of 
confounding variables (identical to the standardized 
β coefficient in multivariate linear regression), and 
polynomial transformation techniques for correction of 
non-monotonic correlations, an experienced statistics 
professional should be consulted for planning and 
execution of analyses of greater complexity.

Correlation analyses can also be employed to compare 
parallelism of measures between two different scales 
for measurement of the same phenomenon, such as 
psychometric quality-of-life scales,28 or clinimetric 
scales, such as pressure ulcer risk scales. However, 
researchers very often use them erroneously to test 
agreement of data or consecutive measures of the same 
phenomenon (for example, test-retest,29 calibration 
of measurement instruments, interrater comparisons), 
even though there are more appropriate methods for 
these purposes.30

Finally, strategies for evaluation of correlations 
between variables should be encouraged in clinical 
and biomedical research, since they maximize 
understanding of the phenomena studied. However, due 
to the peculiarities inherent to the different methods, 
they must be described in detail in the methodology 
and in the presentation of results.
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