Jornal Vascular Brasileiro
https://jvascbras.org/article/doi/10.1590/1677-5449.006317
Jornal Vascular Brasileiro
Original Article

Desenvolvimento de modelo clínico para predição da possibilidade de identificação da artéria de Adamkiewicz por angiotomografia

Development of a clinical model to predict the likelihood of identification of the Adamkiewicz artery by angiotomography

Alexandre Campos Moraes Amato, José Rodrigues Parga Filho, Noedir Antônio Groppo Stolf

Downloads: 0
Views: 316

Resumo

Contexto: Diferenças morfológicas da artéria de Adamkiewicz (AKA) entre a população portadora e não portadora de doença aórtica têm importância clínica, influenciando as complicações neuroisquêmicas da medula espinhal em procedimentos operatórios. Ainda não é conhecida a correlação entre parâmetros clínicos e a previsibilidade da identificação dessa artéria pela angiotomografia. Objetivo: Desenvolver um modelo matemático que, através de parâmetros clínicos correlacionados com aterosclerose, possa prever a probabilidade de identificação da AKA em pacientes submetidos a angiotomografias. Método: Estudo observacional transversal utilizando banco de imagens e dados de pacientes. Foi feita análise estatística multivariada e criado modelo matemático logit de predição para identificação da AKA. Variáveis significativas foram utilizadas na montagem da fórmula para cálculo da probabilidade de identificação. O modelo foi calibrado, e a discriminação foi avaliada pela curva receiver operating characteristic (ROC). A seleção das variáveis explanatórias foi guiada pela maior área na curva ROC (p = 0,041) e pela significância combinada das variáveis. Resultados: Foram avaliados 110 casos (54,5% do sexo masculino, com idade média de 60,97 anos e etnia com coeficiente B -2,471, M -1,297, N -0,971), com AKA identificada em 60,9%. Índice de massa corporal: 27,06 ± 0,98 (coef. -0,101); fumantes: 55,5% (coef. -1,614/-1,439); diabéticos: 13,6%; hipertensos: 65,5% (coef. -1,469); dislipidêmicos: 58,2%; aneurisma aórtico: 38,2%; dissecção aórtica: 12,7%; e trombo mural: 24,5%. Constante de 6,262. Fórmula para cálculo da probabilidade de detecção: ( . . . ( ) . . tan ) 1 ( 1) Coef Etnia Coef IMC IMC Coef fumante Coef HAS Coef dislip Cons te e − + ×+ + + + − + . O modelo de predição foi criado e disponibilizado no link https://vascular.pro/aka-model. Conclusão: Com as covariáveis etnia, índice de massa corporal, tabagismo, hipertensão arterial e dislipidemia, foi possível criar um modelo matemático de predição de identificação da AKA com significância combinada de nove coeficientes (p = 0,042).

Palavras-chave

medula espinhal; coluna vertebral; aorta; Adamkiewicz.

Abstract

Background: There are clinically important morphological differences in the Adamkiewicz artery (AKA) between populations that do and do not have aortic disease and they have an influence on the neuroischemic complications involving the spinal cord during surgical operations. It is not yet known whether clinical parameters correlate with the predictability of identification of the artery using angiotomography. Objective: To develop a mathematical model that by correlating clinical parameters with atherosclerosis enables prediction of the probability of identification of the AKA in patients examined with angiotomography. Method: This is a cross-sectional, observational study using a patient database and image bank. A multivariate statistical analysis was conducted and a logit mathematical model was constructed to predict AKA identification. Significant variables were used to build a formula for calculation of the probability of identification. This model was calibrated and its power of discrimination was assessed using receiver operating characteristic (ROC) curves. Selection of explanatory variables was based on largest area under the ROC curve (p = 0.041) and combined significance of variables. Results: A total of 110 cases were analyzed (54.5% were male, mean age was 60.97 years, and ethnicity coefficients were white -2.471, brown -1.297, and black -0.971) and the AKA was identified in 60.9%. Body mass index: 27.06 ± 0.98 (coef. -0.101); smokers: 55.5% (coef. -1.614/-1.439); diabetes: 13.6%; hypertension: 65.5% (coef. -1.469); dyslipidemia: 58.2%; aortic aneurysm: 38.2%; aortic dissection: 12.7%; and mural thrombus: 24.5%. The constant was 6.262. The formula for calculating the probability of detection is as follows: ( . . ( ) . ker . . tan ) 1 ( 1) Coef Etnicity Coef BMI BMI Coef smo Coef SAH Coef dyslip Cons t e − + ×+ + + + − + . The prediction model was constructed and made available at: https://vascular.pro/aka-model. Conclusions: Using the covariates ethnicity, body mass index, smoking, arterial hypertension, and dyslipidemia, it proved possible to create a mathematical model for predicting identification of the AKA with a combined significance of nine coefficients (p = 0.042).

Keywords

spinal marrow; spinal column; aorta; Adamkiewicz.

References

1. Melissano G, Bertoglio L, Civelli V, et al. Demonstration of the Adamkiewicz artery by multidetector computed tomography angiography analysed with the open-source software OsiriX. Eur J Vasc Endovasc Surg. 2009;37(4):395-400. http://dx.doi.org/10.1016/j.ejvs.2008.12.022. PMid:19230726.

2. Amato ACM, Stolf NAG. Anatomy of spinal blood supply. J Vasc Bras. 2015;14(3):248-52. http://dx.doi.org/10.1590/1677-5449.0004.

3. Amato ACM, Parga JR Fo, Stolf NAG. Predictors of Adamkiewicz artery and anterior spinal artery detection through computerized tomographic angiography. SAGE Open Med. 2017;5:1-7. http://dx.doi.org/10.1177/2050312117711599. PMid:28616230.

4. Melissano G, Civilini E, Bertoglio L, Calliari F, Amato ACM, Chiesa R. Angio-CT imaging of the spinal cord vascularisation: a pictorial essay. Eur J Vasc Endovasc Surg. 2010;39(4):436-40. http://dx.doi.org/10.1016/j.ejvs.2009.11.026. PMid:20034815.

5. Amato ACM, Parga JR Fo, Stolf NAG. Influential factors on the evaluation of Adamkiewicz artery using a 320-detector row computed tomography device. Ann Vasc Surg. 2017;44:136-45. http://dx.doi.org/10.1016/j.avsg.2017.02.019. PMid:28501659.

6. Ou P, Schmit P, Layouss W, Sidi D, Bonnet D, Brunelle F. CT angiography of the artery of Adamkiewicz with 64-section technology: first experience in children. AJNR Am J Neuroradiol. 2007;28(2):216-9. PMid:17296982.

7. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease - executive summary: a report of the american college of cardiology foundation/american heart association task force on practice guidelines, american association for thoracic surgery, american college of radiology, american stroke association, society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, society of interventional radiology, society of thoracic surgeons, and society for vascular medicine. Anesth Analg. 2010;111(2):279-315. http://dx.doi.org/10.1213/ANE.0b013e3181dd869b. PMid:20664093.

8. Sposito AC, Caramelli B, Fonseca FAH, et al. IV brazilian guideline for dyslipidemia and atherosclerosis prevention: department of atherosclerosis of Brazilian Society of Cardiology. Arq Bras Cardiol. 2007;88:2-19. http://dx.doi.org/10.1590/S0066-782X2007000700002. PMid:17515982.

9. Gao L, Wang L, Su B, Wang P, Ye J, Shen H. The vascular supply to the spinal cord and its relationship to anterior spine surgical approaches. Spine J. 2013;13(8):966-73. http://dx.doi.org/10.1016/j.spinee.2013.03.017. PMid:23608560.

10. Forbes G, Nichols DA, Jack CR Jr, et al. Complications of spinal cord arteriography: prospective assessment of risk for diagnostic procedures. Radiology. 1988;169(2):479-84. http://dx.doi.org/10.1148/radiology.169.2.3174997. PMid:3174997.

11. Savader SJ, Williams GM, Trerotola SO, et al. Preoperative spinal artery localization and its relationship to postoperative neurologic complications. Radiology. 1993;189(1):165-71. http://dx.doi.org/10.1148/radiology.189.1.8372189. PMid:8372189.

12. Boll DT, Bulow H, Blackham KA, Aschoff AJ, Schmitz BL. MDCT angiography of the spinal vasculature and the artery of Adamkiewicz. AJR Am J Roentgenol. 2006;187(4):1054-60. http://dx.doi.org/10.2214/AJR.05.0562. PMid:16985157.

13. Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251(1):175-84. http://dx.doi.org/10.1148/radiol.2511081296. PMid:19332852.

14. Joseph PM, Ruth C. A method for simultaneous correction of spectrum hardening artifacts in CT images containing both bone and iodine. Med Phys. 1997;24(10):1629-34. http://dx.doi.org/10.1118/1.597970. PMid:9350717.

15. Joseph PM, Spital RD. A method for correcting bone induced artifacts in computed tomography scanners. J Comput Assist Tomogr. 1978;2(1):100-8. http://dx.doi.org/10.1097/00004728-197801000-00017. PMid:670461.

16. Goodenough DJ, Weaver KE, Costaridou H, Eerdmans H, Huysmans P. A new software correction approach to volume averaging artifacts in CT. Comput Radiol. 1986;10(2-3):87-98. http://dx.doi.org/10.1016/0730-4862(86)90050-8. PMid:3754803.

17. Olijhoek JK, van der Graaf Y, Banga JD, et al. The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur Heart J. 2004;25(4):342-8. http://dx.doi.org/10.1016/j.ehj.2003.12.007. PMid:14984924.

18. Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248(3):995-1003. http://dx.doi.org/10.1148/radiol.2483071964. PMid:18710988.

19. Van Unnik JG, Broerse JJ, Geleijns J, Jansen JT, Zoetelief J, Zweers D. Survey of CT techniques and absorbed dose in various dutch hospitals. Br J Radiol. 1997;70(832):367-71. http://dx.doi.org/10.1259/bjr.70.832.9166072. PMid:9166072.

5cd2cac10e88258948632f8f jvb Articles

J Vasc Bras

Share this page
Page Sections