Jornal Vascular Brasileiro
https://jvascbras.org/article/doi/10.1590/1677-5449.200131
Jornal Vascular Brasileiro
Review Article

COVID-19 grave: entenda o papel da imunidade, do endotélio e da coagulação na prática clínica

Severe COVID-19: understanding the role of immunity, endothelium, and coagulation in clinical practice

Simone Cristina Soares Brandão; Emmanuelle Tenório Albuquerque Madruga Godoi; Júlia de Oliveira Xavier Ramos; Leila Maria Magalhães Pessoa de Melo; Emanuel Sávio Cavalcanti Sarinho

Downloads: 0
Views: 9

Resumo

Resumo: O SARS-CoV-2 é o responsável pela pandemia da COVID-19. O sistema imunológico é fator determinante no combate à infecção viral e, quando atua equilibrada e eficientemente, a doença é autolimitada e benigna. Uma parcela significativa da população, porém, apresenta resposta imune exacerbada. Os indivíduos diabéticos, hipertensos, obesos e com doenças cardiovasculares, infectados pelo vírus, apresentam maior chance de progredir para formas graves. Essas doenças estão relacionadas a processos inflamatórios crônicos e disfunção endotelial. Os receptores do tipo Toll estão presentes nas células de defesa e participam da imunopatologia de doenças cardiovasculares e metabólicas, levando à produção de citocinas pró-inflamatórias quando ativados. Devido à ação viral e à hiperativação do sistema imune, estados de hiperinflamação, hiperativação plaquetária, disfunção endotelial e hipercoagulabilidade são desenvolvidos, predispondo a tromboses venosas e arteriais. Discutiremos sobre a interação entre a COVID-19, a imunidade, o endotélio e a coagulação, como também sobre as possíveis causas de doenças cardiometabólicas impactarem negativamente na evolução da COVID-19.

Palavras-chave

COVID-19, endotélio, imunidade, aterosclerose, trombose

Abstract

SARS-CoV-2 is responsible for the COVID-19 pandemic. The immune system is a determinant factor in defense against viral infections. Thus, when it acts in a balanced and effective manner the disease is self-limited and benign. Nevertheless, in a significant proportion of the population, the immune response is exaggerated. When infected, patients with diabetes, hypertension, obesity, and cardiovascular disease are more likely to progress to severe forms. These diseases are related to chronic inflammation and endothelial dysfunction. Toll-like receptors are expressed on immune cells and play an important role in the physiopathology of cardiovascular and metabolic diseases. When activated, they can induce release of inflammatory cytokines. Hypercoagulability, hyperinflammation, platelet hyperresponsiveness, and endothelial dysfunction occur in immune system hyperactivity caused by viral activity, thereby increasing the risk of arterial and venous thrombosis. We discuss the interactions between COVID-19, immunity, the endothelium, and coagulation, as well as why cardiometabolic diseases have a negative impact on COVID-19 prognosis.

Keywords

COVID-19; endothelium; immunity; atherosclerosis; thrombosis.

References

1 Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. http://dx.doi.org/10.1001/jamainternmed.2020.0994. PMid:32167524.

2 Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine. 2020;57:102833. http://dx.doi.org/10.1016/j.ebiom.2020.102833. PMid:32574956.

3 Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. http://dx.doi.org/10.1016/j.jcv.2020.104362. PMid:32305883.

4 Gandhi RT, Lynch JB, del Rio C. Mild or moderate COVID-19. N Engl J Med. 2020;NEJMcp2009249. http://dx.doi.org/10.1056/NEJMcp2009249. PMid:32329974.

5 Swirski FK. Inflammation and CVD in 2017: from clonal haematopoiesis to the CANTOS trial. Nat Rev Cardiol. 2018;15(2):79-80. http://dx.doi.org/10.1038/nrcardio.2017.208. PMid:29263444.

6 Brasil. Coronavírus COVID-2019: diretrizes para diagnóstico e tratamento da COVID-19. 3. ed. Brasília: Ministério da Saúde; 2020.

7 Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854-87. http://dx.doi.org/10.1007/s00134-020-06022-5. PMid:32222812.

8 Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. http://dx.doi.org/10.1056/NEJMoa2002032. PMid:32109013.

9 Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9. http://dx.doi.org/10.1111/jth.14817. PMid:32220112.

10 Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. http://dx.doi.org/10.1038/s41577-020-0311-8. PMid:32346093.

11 Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. http://dx.doi.org/10.1016/j.antiviral.2020.104787. PMid:32251768.

12 Quinti I, Lougaris V, Milito C, et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020;146(1):211-213.e4. http://dx.doi.org/10.1016/j.jaci.2020.04.013. PMid:32333914.

13 Panda SK, Colonna M. Innate lymphoid cells in mucosal immunity. Front Immunol. 2019;10:861. http://dx.doi.org/10.3389/fimmu.2019.00861. PMid:31134050.

14 Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. http://dx.doi.org/10.1016/S0140-6736(20)30628-0. PMid:32192578.

15 Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. http://dx.doi.org/10.1016/S0140-6736(20)30566-3. PMid:32171076.

16 Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS‐CoV‐2 spike glycoprotein with ACE‐2 receptor homologs and human TLRs. J Med Virol. 2020;92(10):2105-13. http://dx.doi.org/10.1002/jmv.25987. PMid:32383269.

17 Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus: a perspective. Expert Rev Clin Immunol. 2020;16(5):465-70. http://dx.doi.org/10.1080/1744666X.2020.1750954. PMid:32237901.

18 Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126(12):1671-81. http://dx.doi.org/10.1161/CIRCRESAHA.120.317134. PMid:32302265.

19 Marques RE, Marques PE, Guabiraba R, Teixeira MM. Exploring the homeostatic and sensory roles of the immune system. Front Immunol. 2016;7:125. http://dx.doi.org/10.3389/fimmu.2016.00125. PMid:27065209.

20 McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. http://dx.doi.org/10.1016/j.autrev.2020.102537. PMid:32251717.

21 Tufan A, Avanoğlu Güler A, Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. TURKISH J Med Sci. 2020;50(SI-1):620-32. http://dx.doi.org/10.3906/sag-2004-168.

22 Wan W, Murphy PM. Regulation of atherogenesis by chemokines and chemokine receptors. Arch Immunol Ther Exp. 2013;61(1):1-14. http://dx.doi.org/10.1007/s00005-012-0202-1. PMid:23224338.

23 Kim AGR. Coronavirus disease 2019 (COVID-19): management in hospitalized adult [Internet]. 2020 [citado 2020 maio 10]. https://www.uptodate.com/contents/coronavirus-disease-2019-COVID-19-management-in-hospitalized-adults

24 Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. http://dx.doi.org/10.1136/bmj.m1966. PMid:32444366.

25 Beeching NJ, Fletcher Tom EFR. Coronavirus disease 2019 (COVID-19). BMJ Best Practice. 2020.

26 Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014;66(9):2613-20. http://dx.doi.org/10.1002/art.38690. PMid:24782338.

27 Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620-36. http://dx.doi.org/10.1161/CIRCRESAHA.115.306301. PMid:26892962.

28 Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020;14(3):247-50. http://dx.doi.org/10.1016/j.dsx.2020.03.013. PMid:32247212.

29 Bermejo-Martin JF, Almansa R, Torres A, González-Rivera M, Kelvin DJ. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res. 2020;116(10):e132-3. http://dx.doi.org/10.1093/cvr/cvaa140. PMid:32420587.

30 Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017-32. http://dx.doi.org/10.1038/s41591-020-0968-3. PMid:32651579.

31 Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033-40. http://dx.doi.org/10.1182/blood.2020006000. PMid:32339221.

32 Pintão MCTFR. Coagulação intravascular disseminada. Medicina. 2001;34:282-91.

33 Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. http://dx.doi.org/10.1016/S0140-6736(20)30937-5. PMid:32325026.

34 Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383(2):120-8. http://dx.doi.org/10.1056/NEJMoa2015432. PMid:32437596.

35 Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135-40. http://dx.doi.org/10.1016/S1473-3099(20)30434-5. PMid:32526193.

36 Godoi ETAM, Brandt CT, Lacerda HR, et al. Intima-media thickness in the carotid and femoral arteries for detection of arteriosclerosis in human immunodeficiency virus-positive individuals. Arq Bras Cardiol. 2017;108(1):3-11. . PMid:28146208.

37 Costa IBSS, Bittar CS, Rizk SI, et al. O coração e a COVID-19: o que o cardiologista precisa saber. Arq Bras Cardiol. 2020;114(5):805-16. http://dx.doi.org/10.36660/abc.20200279. PMid:32401847.

38 Corrêa-Camacho CR, Dias-Melicio LASA. Atherosclerosis, antinflammatory response. Arq Ciênc Saúde. 2007;14(1):41-8.

39 Kobiyama K, Ley K. Atherosclerosis. Circ Res. 2018;123(10):1118-20. http://dx.doi.org/10.1161/CIRCRESAHA.118.313816. PMid:30359201.

40 Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052-9. http://dx.doi.org/10.1001/jama.2020.6775. PMid:32320003.

41 Abbas A, Lichtman A, Pillai S, Baker D, Baker A. Imunologia celular e molecular. 8. ed. Rio de Janeiro: Elsevier; 2015. p. 27-99, p. 138-209, p. 439-469.

42 Eguchi K, Manabe I. Toll-Like receptor, lipotoxicity and chronic inflammation: the pathological link between obesity and cardiometabolic disease. J Atheroscler Thromb. 2014;21(7):629-39. http://dx.doi.org/10.5551/jat.22533. PMid:24695021.

43 Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340(2):115-26. http://dx.doi.org/10.1056/NEJM199901143400207. PMid:9887164.

44 Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-31. http://dx.doi.org/10.1056/NEJMoa1707914. PMid:28845751.

45 Ferraz EG, Silveira BBSJ. Receptores Toll-Like: ativação e regulação da resposta imune. Rev Gaucha Odontol. 2011;59(3):483-90.

46 Beun R, Kusadasi N, Sikma M, Westerink J, Huisman A. Thromboembolic events and apparent heparin resistance in patients infected with SARS‐CoV‐2. Int J Lab Hematol. 2020;42(Suppl 1):19-20. http://dx.doi.org/10.1111/ijlh.13230. PMid:32311843.

47 Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020;75(23):2950-73. http://dx.doi.org/10.1016/j.jacc.2020.04.031. PMid:32311448.

48 Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID‐19 patients: emerging evidence and call for action. Br J Haematol. 2020;189(5):846-7. http://dx.doi.org/10.1111/bjh.16727. PMid:32304577.

49 Llitjos J, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID‐19 patients. J Thromb Haemost. 2020;18(7):1743-6. http://dx.doi.org/10.1111/jth.14869. PMid:32320517.

50 Klok FA, Kruip MJHA, Van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-7. http://dx.doi.org/10.1016/j.thromres.2020.04.013. PMid:32291094.

51 Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020;18(5):1023-6. http://dx.doi.org/10.1111/jth.14810. PMid:32338827.

52 Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. http://dx.doi.org/10.1111/jth.14768. PMid:32073213.

53 Yang X, Yang Q, Wang Y, et al. Thrombocytopenia and its association with mortality in patients with COVID‐19. J Thromb Haemost. 2020;18(6):1469-72. http://dx.doi.org/10.1111/jth.14848. PMid:32302435.

54 Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel Stroke as a presenting feature of COVID-19 in the young. N Engl J Med. 2020;382(20):e60. http://dx.doi.org/10.1056/NEJMc2009787. PMid:32343504.

55 Carlotti APCP, Carvalho WB, Johnston C, Rodriguez IS, Delgado AF. COVID-19 diagnostic and management protocol for pediatric patients. Clinics. 2020;75:e1894. http://dx.doi.org/10.6061/clinics/2020/e1894. PMid:32321116.

56 Grein J, Ohmagari N, Shin D, et al. Compassionate use of Remdesivir for patients with severe COVID-19. N Engl J Med. 2020;382(24):2327-36. http://dx.doi.org/10.1056/NEJMoa2007016. PMid:32275812.

57 Horby P, Lim WS, Emberson J, et al. Dexamethasone in hospitalized patients with COVID-19: preliminary report. N Engl J Med. 2020. PMid:32678530.

58 Wang Y, Jiang W, He Q, et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. medRxiv. 2020. https://doi.org/10.1101/2020.03.06.20032342.

59 Caprini JA, Arcelus JI, Reyna J. Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease. Semin Hematol. 2001;38(2, Suppl 5):12-9. http://dx.doi.org/10.1053/shem.2001.25184. PMid:11449339.

60 Orsi FA, De Paula EV, Santos FO, et al. Guidance on diagnosis, prevention and treatment of thromboembolic complications in COVID-19: a position paper of the Brazilian Society of Thrombosis and Hemostasis and the Thrombosis and Hemostasis Committee of the Brazilian Association of Hematology, Hemotherapy and Cellular Therapy. Hem. Hematol Transfus Cell Ther. 2020. http://dx.doi.org/10.1016/j.htct.2020.06.001. PMid:32565232.

61 Ramacciotti E, Macedo AS, Biagioni RB, et al. Evidence-based practical guidance for the antithrombotic management in patients with coronavirus disease (COVID-19) in 2020. Clin Appl Thromb Hemost. 2020;26:1076029620936350. PMid:32649232.

62 Moores LK, Tritschler T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with COVID-19. Chest [revista eletrônica]. 2020 [citado 2020 maio 10]. https://linkinghub.elsevier.com/retrieve/pii/S0012369220316251

63 Decousus H, Tapson VF, Bergmann J-F, et al. Factors at admission associated with bleeding risk in medical patients: findings from the IMPROVE investigators. Chest. 2011;139(1):69-79. http://dx.doi.org/10.1378/chest.09-3081. PMid:20453069.
 


Submitted date:
07/22/2020

Accepted date:
08/17/2020

5faeccee0e8825fe27134908 jvb Articles

J Vasc Bras

Share this page
Page Sections