Comparação entre variáveis categóricas em estudos clínicos e experimentais
Comparing categorical variables in clinical and experimental studies
Anna Carolina Miola, Hélio Amante Miot
References
1. Greenhalgh T. How to read a paper: statistics for the non-statistician. I: Different types of data need different statistical tests. BMJ. 1997;315(7104):364-6. http://dx.doi.org/10.1136/bmj.315.7104.364. PMid:9270463.
2. Miot HA. Analysis of ordinal data in clinical and experimental studies. J Vasc Bras. 2020;19:e20200185. http://dx.doi.org/10.1590/1677-5449.200185. PMid:34211532.
3. Perkins SM. Statistical inference on categorical variables. Methods Mol Biol. 2007;404:73-88. http://dx.doi.org/10.1007/978-1-59745-530-5_5. PMid:18450046.
4. Pereira JCR. Análise de dados qualitativos: estratégias metodológicas para as ciências da saúde humanas e sociais. São Paulo: EdUSP; 1999.
5. Agresti A. An introduction to categorical data analysis. 2nd ed. New Jersey: John Wiley & Sons; 2020.
6. Quinn GP, Keough MJ. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press; 2002. http://dx.doi.org/10.1017/CBO9780511806384.
7. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127-41. http://dx.doi.org/10.1002/sim.2331. PMid:16217841.
8. Naggara O, Raymond J, Guilbert F, Roy D, Weill A, Altman DG. Analysis by categorizing or dichotomizing continuous variables is inadvisable: an example from the natural history of unruptured aneurysms. AJNR Am J Neuroradiol. 2011;32(3):437-40. http://dx.doi.org/10.3174/ajnr.A2425. PMid:21330400.
9. Zaslavsky BG. Bayesian versus frequentist hypotheses testing in clinical trials with dichotomous and countable outcomes. J Biopharm Stat. 2010;20(5):985-97. http://dx.doi.org/10.1080/10543401003619023. PMid:20721786.
10. Turner N. Chi-squared test. J Clin Nurs. 2000;9(1):93. PMid:11041649.
11. Goodman LA. On the multivariate analysis of three dichotomous variables. Ajs. 1965;71(3):290-301. http://dx.doi.org/10.1086/224088. PMid:5897475.
12. Eberhardt KR, Fligner MA. A comparison of two tests for equality of two proportions. Am Stat. 1977;31:151-5.
13. Haber M. A comparison of some conditional and unconditional exact tests for 2x2 contingency tables: a comparison of some conditional and unconditional exact tests. Commun Stat Simul Comput. 1987;16(4):999-1013. http://dx.doi.org/10.1080/03610918708812633.
14. Martín Andrés A, Mato AS, Herranz TI. A critical review of asymptotic methods for comparing two proportions by means of independent samples. Commun Stat Simul Comput. 1992;21(2):551-86. http://dx.doi.org/10.1080/03610919208813035.
15. Holmo NF, Ramos GB, Salomao H, et al. Complex segregation analysis of facial melasma in Brazil: evidence for a genetic susceptibility with a dominant pattern of segregation. Arch Dermatol Res. 2018;310(10):827-31. http://dx.doi.org/10.1007/s00403-018-1861-5. PMid:30167816.
16. Tamega AA, Bezerra LVGSP, Pereira FP, Miot HA. Blood groups and discoid lupus erythematosus. An Bras Dermatol. 2009;84(5):477-81. http://dx.doi.org/10.1590/S0365-05962009000500005.
17. Amiri P, Javid AZ, Moradi L, et al. Associations between new and old anthropometric indices with type 2 diabetes mellitus and risk of metabolic complications: a cross-sectional analytical study. J Vasc Bras. 2021;20:e20200236. http://dx.doi.org/10.1590/1677-5449.200236. PMid:34630540.
18. Ludbrook J. Analysis of 2 × 2 tables of frequencies: matching test to experimental design. Int J Epidemiol. 2008;37(6):1430-5. http://dx.doi.org/10.1093/ije/dyn162. PMid:18710887.
19. Oliveira NL, Pereira CAB, Diniz MA, Polpo A. A discussion on significance indices for contingency tables under small sample sizes. PLoS One. 2018;13(8):e0199102. http://dx.doi.org/10.1371/journal.pone.0199102. PMid:30071022.
20. Lloyd CJ. A new exact and more powerful unconditional test of no treatment effect from binary matched pairs. Biometrics. 2008;64(3):716-23. http://dx.doi.org/10.1111/j.1541-0420.2007.00936.x. PMid:18047530.
21. Barnard GA. Significance tests for 2 × 2 tables. Biometrika. 1947;34(1-2):123-38. http://dx.doi.org/10.1093/biomet/34.1-2.123. PMid:20287826.
22. Lydersen S, Fagerland MW, Laake P. Recommended tests for association in 2 × 2 tables. Stat Med. 2009;28(7):1159-75. http://dx.doi.org/10.1002/sim.3531. PMid:19170020.
23. Goodman LA. On methods for comparing contingency tables. J Roy Stat Soc: Series A (General). 1963;126(1):94-108. http://dx.doi.org/10.2307/2982447.
24. Amiri S, Modarres R. Comparison of tests of contingency tables. J Biopharm Stat. 2017;27(5):784-96. http://dx.doi.org/10.1080/10543406.2016.1269786. PMid:27936354.
25. Ludbrook J. Analysing 2 × 2 contingency tables: which test is best? Clin Exp Pharmacol Physiol. 2013;40(3):177-80. http://dx.doi.org/10.1111/1440-1681.12052. PMid:23294254.
26. Choi L, Blume JD, Dupont WD. Elucidating the foundations of statistical inference with 2 × 2 tables. PLoS One. 2015;10(4):e0121263. http://dx.doi.org/10.1371/journal.pone.0121263. PMid:25849515.
27. Sourial N, Wolfson C, Zhu B, et al. Correspondence analysis is a useful tool to uncover the relationships among categorical variables. J Clin Epidemiol. 2010;63(6):638-46. http://dx.doi.org/10.1016/j.jclinepi.2009.08.008. PMid:19896800.
28. Watts DD. Correspondence analysis: a graphical technique for examining categorical data. Nurs Res. 1997;46(4):235-9. http://dx.doi.org/10.1097/00006199-199707000-00009. PMid:9261298.
29. Knapp TR. Treating ordinal scales as ordinal scales. Nurs Res. 1993;42(3):184-6. http://dx.doi.org/10.1097/00006199-199305000- 00011. PMid:8506169.
30. Miot HA. Sample size in clinical and experimental studies. J Vasc Bras. 2011;10(4):275-8. http://dx.doi.org/10.1590/S1677-54492011000400001.
31. van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat Methods Med Res. 2019;28(8):2455-74. http://dx.doi.org/10.1177/0962280218784726. PMid:29966490.
32. Campbell MJ, Julious SA, Altman DG. Estimating sample sizes for binary, ordered categorical, and continuous outcomes in two group comparisons. BMJ. 1995;311(7013):1145-8. http://dx.doi.org/10.1136/bmj.311.7013.1145. PMid:7580713.
33. Sharpe D. Chi-square test is statistically significant: now what? Pract Assess, Res Eval. 2015;20:8.
34. Carneiro RM, van Bellen B, Santana PRP, Gomes ACP. Prevalence of incidental pulmonary thromboembolism in cancer patients: retrospective analysis at a large center. J Vasc Bras. 2017;16(3):232-8. http://dx.doi.org/10.1590/1677-5449.002117. PMid:29930652.
35. Goodman LA, Kruskal WH. Measures of association for cross classifications. J Am Stat Assoc. 1954;49:732-64.
36. Parshall MB. Unpacking the 2 × 2 table. Heart Lung. 2013;42(3):221- 6. http://dx.doi.org/10.1016/j.hrtlng.2013.01.006. PMid:23490241.
37. Miola AC, Miot HA. P-value and effect-size in clinical and experimental studies. J Vasc Bras. 2021;20:e20210038. http://dx.doi.org/10.1590/1677-5449.210038. PMid:34267792.
38. Katz MH. Multivariable analysis: a practical guide for clinicians and public health researchers. Cambridge: Cambridge University Press; 2011. http://dx.doi.org/10.1017/CBO9780511974175.
39. Valenzuela C. 2 solutions for estimating odds ratios with zeros. Rev Med Chil. 1993;121(12):1441-4. PMid:8085071.
40. Lawson R. Small sample confidence intervals for the odds ratio. Commun Stat Simul Comput. 2004;33(4):1095-113. http://dx.doi.org/10.1081/SAC-200040691.
41. Pinto VF. Estudos clínicos de não-inferioridade: fundamentos e controvérsias. J Vasc Bras. 2010;9(3):145-51. http://dx.doi.org/10.1590/S1677-54492010000300009.
42. Mellor K, Eddy S, Peckham N, et al. Progression from external pilot to definitive randomised controlled trial: a methodological review of progression criteria reporting. BMJ Open. 2021;11(6):e048178. http://dx.doi.org/10.1136/bmjopen-2020-048178. PMid:34183348.
43. Willan AR, Thabane L. Bayesian methods for pilot studies. Clin Trials. 2020;17(4):414-9. http://dx.doi.org/10.1177/1740774520914306. PMid:32297539.
44. Thabane L, Lancaster G. A guide to the reporting of protocols of pilot and feasibility trials. Pilot Feasibility Stud. 2019;5(1):37. http://dx.doi.org/10.1186/s40814-019-0423-8. PMid:30858987.
Submitted date:
12/11/2021
Accepted date:
01/20/2022