Jornal Vascular Brasileiro
https://jvascbras.org/article/doi/10.1590/1677-5449.202500101
Jornal Vascular Brasileiro
Original Article

Impacto da temperatura na produção de espuma densa de polidocanol a 1%: comparação entre as técnicas de Tessari e seringa dupla em estudo experimental

Impact of temperature on the production of 1% polidocanol foam: comparison between the Tessari and double-syringe techniques in an experimental study

Genaro Fahrnholz Buonsante; Marcos Arêas Marques; Bernardo Cunha Senra Barros; Verônica Cunha Assunção; Stênio Karlos Alvim Fiorelli; Rossano Kepler Alvim Fiorelli

Downloads: 0
Views: 6

Resumo

Contexto: A espuma densa de polidocanol é amplamente utilizada na escleroterapia para o tratamento de varizes de membros inferiores, sendo influenciada por diversas variáveis nos métodos de preparo e pela temperatura ambiente.

Objetivos: Comparar a influência da temperatura na meia-vida e no diâmetro das bolhas na espuma densa de polidocanol a 1% utilizando as técnicas de Tessari e da seringa dupla.

Métodos: O estudo utilizou espuma densa de polidocanol a 1%, preparada em temperatura ambiente e resfriada a 4 °C, por meio de duas técnicas: técnica de Tessari e técnica da seringa dupla. A meia-vida em segundos da espuma densa foi avaliada registrando-se o tempo necessário para a drenagem de metade do volume líquido, e o diâmetro das bolhas foi analisado por microscopia. As diferenças entre os grupos foram consideradas significativas quando p ≤ 0,05.

Resultados: O resfriamento aumentou significativamente a meia-vida da espuma densa, especialmente quando a técnica da seringa dupla foi utilizada. A técnica de Tessari produziu bolhas menores em ambas as condições de temperatura.

Conclusões: O resfriamento do conjunto de polidocanol a 1% + ar ambiente gerou aumento da meia-vida, independentemente da técnica de preparo utilizada. Não houve influência da temperatura no diâmetro das bolhas.

Palavras-chave

 escleroterapia; varizes; polidocanol; temperatura; insuficiência venosa; eficácia

Abstract

Background: Polidocanol (POL) foam is widely used in sclerotherapy for the treatment of lower limb varicose veins and its properties are influenced by multiple variables, including preparation methods and room temperature.

Objectives: To compare the influence of temperature on the half-life and bubble diameter of 1% polidocanol foam using the Tessari and double syringe techniques.

Methods: The study employed 1% polidocanol foam prepared at room temperature and cooled to 4 °C, using two techniques: the Tessari technique and the double syringe technique. The foam half-life was recorded, defined as the time in seconds taken for half of the liquid volume to drain. Bubble diameter was analyzed with microscopy. Differences between groups were considered significant at p ≤ 0.05.

Results: Cooling significantly extended the half-life of the foam, especially when the double syringe technique was employed. The Tessari technique produced smaller bubbles under both temperature conditions.

Conclusions: Cooling the mixture of 1% polidocanol and room air increased half-life, irrespective of the preparation technique employed. Temperature had no effect on bubble diameter.

Keywords

sclerotherapy; varicose veins; polidocanol; temperature; venous insufficiency; efficacy

References

1 Rabe E, Breu FX, Cavezzi A, et al. European guidelines for sclerotherapy in chronic venous disorders. Phlebology. 2014;29(6):338-54. http://doi.org/10.1177/0268355513483280. PMid:23559590.

2 Wong K, Connor DE, Andrade OC, Parsi K. Foam bubble size is significantly influenced by sclerosant concentration for polidocanol but not sodium tetradecyl sulphate. Phlebology. 2021;36(7):576-87. http://doi.org/10.1177/0268355521995012. PMid:33736561.

3 Wong M, Parsi K, Myers K, et al. Sclerotherapy of lower limb veins: Indications, contraindications and treatment strategies to prevent complications: a consensus document of the International Union of Phlebology. Phlebology. 2023;38(4):205-58. http://doi.org/10.1177/02683555231151350. PMid:36916540.

4 Kikuchi R, Nhuch C, Drummond DAB, et al. Brazilian guidelines on chronic venous disease of the Brazilian Society of Angiology and Vascular Surgery. J Vasc Bras. 2023;22:e20230064. http://doi.org/10.1590/1677-5449.202300642. PMid:38021274.

5 Gloviczki P, Lawrence PF, Wasan SM, et al. The 2023 Society for Vascular Surgery, American Venous Forum, and American Vein and Lymphatic Society clinical practice guidelines for the management of varicose veins of the lower extremities. Part II: Endorsed by the Society of Interventional Radiology and the Society for Vascular Medicine. J Vasc Surg Venous Lymphat Disord. 2024;12(1):101670. http://doi.org/10.1016/j.jvsv.2023.08.011. PMid:37652254.

6 Redondo P, Cabrera J. Microfoam sclerotherapy. Semin Cutan Med Surg. 2005;24(4):175-83. http://doi.org/10.1016/j.sder.2005.10.005. PMid:16387261.

7 Tessari L, Cavezzi A, Frullini A. Preliminary experience with a new sclerosing foam in the treatment of varicose veins. Dermatol Surg. 2001;27(1):58-60. PMid:11231246.

8 Shi X, Liu Y, Li D, Tursun M, Azmoun S, Liu S. The stability of physician-compounded foam is influenced by the angle of connector. Ann Vasc Surg. 2024;99:217-22. http://doi.org/10.1016/j.avsg.2023.08.011. PMid:37852364.

9 Roche E, Pons R, Roche O, Puig A. A new automated system for the preparation of sclerosant foam: a study of the physical characteristics produced and the device settings required. Phlebology. 2020;35(9):724-33. http://doi.org/10.1177/0268355520937615. PMid:32635818.

10 Carugo D, Ankrett DN, Zhao X, et al. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams. Phlebology. 2016;31(4):283-95. http://doi.org/10.1177/0268355515589063. PMid:26036246.

11 Patel SB, Ostler AE, Pirie TM, Whiteley MS. The effects of altitude, temperature, gas to sclerosant ratio, air versus 50:50 mixture of CO2 and O2, foam volume, presence of silicone, and consecutive uses of syringes on the longevity of Tessari-made foam for sclerotherapy. J Vasc Surg Venous Lymphat Disord. 2014;2(1):116. http://doi.org/10.1016/j.jvsv.2013.10.037. PMid:26993013.

12 Wong K, Chen T, Connor DE, Behnia M, Parsi K. Basic physiochemical and rheological properties of detergent sclerosants. Phlebology. 2015;30(5):339-49. http://doi.org/10.1177/0268355514529271. PMid:24671525.

13 Meghdadi A, Jones SA, Patel VA, Lewis AL, Millar TM, Carugo D. Foam-in-vein: characterization of blood displacement efficacy of liquid sclerosing foams. Biomolecules. 2022;12(12):1725. http://doi.org/10.3390/biom12121725. PMid:36551153.

14 Meghdadi A, Jones SA, Patel VA, Lewis AL, Millar TM, Carugo D. Foam-in-vein: a review of rheological properties and characterization methods for optimization of sclerosing foams. J Biomed Mater Res B Appl Biomater. 2021;109(1):69-91. http://doi.org/10.1002/jbm.b.34681. PMid:32621565.

15 Bentes LGB, Lemos RS, Santos DR, Reis JMC. Epidemiological profile of surgical treatment of varicose veins in Brazil from 2010 to 2020. J Vasc Bras. 2022;21:e20210202. http://doi.org/10.1590/1677-5449.202102022. PMid:36407661.

16 Valenzuela GC, Wong K, Connor DE, Behnia M, Parsi K. Foam sclerosants are more stable at lower temperatures. Eur J Vasc Endovasc Surg. 2013;46(5):593-9. http://doi.org/10.1016/j.ejvs.2013.08.012. PMid:24070851.

17 Tan L, Wong K, Connor D, Fakhim B, Behnia M, Parsi K. Generation of sclerosant foams by mechanical methods increases the foam temperature. Phlebology. 2017;32(7):501-5. http://doi.org/10.1177/0268355516671625. PMid:27738239.

18 Sun Y, Gu H, Yang X, et al. Bleomycin polidocanol foam (BPF) stability: in vitro evidence for the effectiveness of a novel sclerosant for venous malformations. Eur J Vasc Endovasc Surg. 2020;59(6):1011-8. http://doi.org/10.1016/j.ejvs.2020.01.023. PMid:32063463.

19 Zhang H, Yang A, Xu M, Liu S. A modified 3-way tap to enhance the stability and uniformity of sclerosant foam. Ann Vasc Surg. 2021;70:501-5. http://doi.org/10.1016/j.avsg.2020.08.116. PMid:32889163.

20 Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-82. http://doi.org/10.1038/nmeth.2019. PMid:22743772.

21 Bai T, Jiang W, Chen Y, Yan F, Xu Z, Fan Y. Effect of multiple factors on foam stability in foam sclerotherapy. Sci Rep. 2018;8(1):15683. http://doi.org/10.1038/s41598-018-33992-w. PMid:30356108.

22 Bai T, Liu Y, Jiang W, et al. A Review of sclerosing foam stability in the treatment of varicose veins. Dermatol Surg. 2020;46(2):249-57. http://doi.org/10.1097/DSS.0000000000002039. PMid:31569112.

23 Abreu GCG, Camargo O Jr, Abreu MFM, Aquino JLB. Ultrasound-guided foam sclerotherapy for chronic venous disease with ulcer: a prospective multiple outcome cohort study. J Vasc Bras. 2020;19:e20180108. http://doi.org/10.1590/1677-5449.180108. PMid:32499822.

24 Miranda LA, Carmo RC, Sathler-Melo CC, Castro-Santos G. Bilateral foam polidocanol sclerotherapy of great saphenous veins and their tributaries in synchronous procedure. J Vasc Bras. 2021;20:e20200178. http://doi.org/10.1590/1677-5449.200178. PMid:34211536.

25 Cameron E, Chen T, Connor DE, Behnia M, Parsi K. Sclerosant foam structure and stability is strongly influenced by liquid air fraction. Eur J Vasc Endovasc Surg. 2013;46(4):488-94. http://doi.org/10.1016/j.ejvs.2013.07.013. PMid:23993276.

26 Bai T, Chen Y, Jiang W, Yan F, Fan Y. Studies on foam decay trend and influence of temperature jump on foam stability in sclerotherapy. Vasc Endovascular Surg. 2018;52(2):98-106. http://doi.org/10.1177/1538574417741786. PMid:29173136.
 


Submitted date:
01/27/2025

Accepted date:
05/07/2025

Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)"> Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)">
68a342a8a9539528db777d43 jvb Articles
Links & Downloads

J Vasc Bras

Share this page
Page Sections