Jornal Vascular Brasileiro
https://jvascbras.org/article/doi/10.1590/S1677-54492012000300002
Jornal Vascular Brasileiro
Artigo Original

Inibição da expressão de ciclooxigenase 2 em feridas cutâneas de camundongos NOD submetidos à terapia a laser de baixa intensidade

Inhibition of cyclooxygenase 2 expression in NOD mice cutaneous wound by low-level laser therapy

Carolina de Lourdes Julião Vieira Rocha; Adeir Moreira Rocha Júnior; Beatriz Julião Vieira Aarestrup; Fernando Monteiro Aarestrup

Downloads: 0
Views: 117

Resumo

CONTEXTO: A terapia a laser de baixa intensidade (LLLT) tem sido relatada como importante moduladora da cicatrização de feridas cutâneas aumentando a proliferação fibroblástica associada ao aumento da expressão da citocina fator transformador de crescimento- β2 (TGF-βB2). OBJETIVO: No presente estudo foram avaliados os efeitos da LLLT sobre a expressão da enzima ciclooxigenase 2 (COX2) no sítio do reparo tecidual utilizando o modelo experimental com camundongos diabéticos não obesos (NOD) para estudar a cicatrização de feridas cutâneas. MÉTODOS: Foram utilizados 30 camundongos NOD, destes 14 ficaram diabéticos e foram divididos em dois grupos: o grupo I (n=7) foi submetido a um procedimento cirúrgico de feridas cutâneas e o grupo II (n=7) foi submetido a um procedimento cirúrgico de feridas cutâneas e tratados com LLLT. O grupo II foi submetido à LLLT nos seguintes parâmetros: 15 mW de potência, dose de 3,8 J/cm² e tempo de aplicação de 20 segundos. Após sete dias do ato cirúrgico e após aplicação do laser, os animais foram eutanasiados com sobredose de anestesia e amostras das feridas foram colhidas para posterior análise histopatológica, histomorfométrica e imuno-histoquímica. RESULTADOS: A LLLT promoveu a inibição da expressão da COX2 em feridas cutâneas de camundongos diabéticos. CONCLUSÃO: Em conjunto, os resultados sugeriram que a LLLT é capaz de modular negativamente a expressão da enzima COX2 contribuindo para o controle da resposta inflamatória em feridas cutâneas de camundongos NOD.

Palavras-chave

camundongos endogâmicos NOD, ciclooxigenase 2, terapia a laser de baixa intensidade

Abstract

BACKGROUND: Low-level laser therapy (LLLT) has been reported to modulate the healing of wounds by inducing an increase in fibroblast number associated with increased expression of the cytokine transforming growth factor-β2 (TGF-β2). OBJECTIVE: In the present study, the effect of LLLT on expression of COX2 at the site of tissue repair was evaluated, using an experimental model with non obese diabetic mice (NOD) to study cutaneous wound healing. METHODS: Thirty NOD mice were used, of which 14 were diabetic and were divided into two groups: group I (n=7) underwent a surgical procedure of skin wounds and group II (n=7) underwent a surgical procedure of skin wounds and treated with LLLT. Group II was submitted to LLLT in the following parameters: 15 mW of power, dose of 3.8 J/cm² and exposure time of 20 seconds. Seven days after surgery and after laser application, animals were euthanized with an overdose of anesthesia and tissue samples were collected for subsequent histological analysis, histomorphometry and immunohistochemistry. RESULTS: The LLLT has promoted the inhibition of COX2 expression in skin wounds in mice diabetic. Taken together the results suggest that LLLT modulate the expression of COX2 improved the control of inflammatory reaction in cutaneous wound lesions in NOD mice. CONCLUSION: Taken together, the results suggested that LLLT is able to negatively modulate the expression of COX2 enzyme contributing to the inflammatory response in cutaneous wounds in NOD mice.

Keywords

mice, inbred NOD, cyclooxygenase 2, laser therapy, low-level

References

Carvalho CBM, Motta Neto , Aragão LP, Oliveira MM, Nogueira MB, Forti AC. Pé diabético: análise bacteriológica de 141 casos. Arq Bras Endocrinol Metabol. 2004;48(3):398-405.

Milech A, Oliveira JEP. Diabetes mellitus: clínica, diagnóstico, tratamento multidisciplinar. 2004.

Economic consequences of diabetes mellitus in the U.S in 1997. Diabetes Care. 1998;21(2):296-309.

Margolis DJ, Berlin JA, Strom BL. Risk factors associated with the failure of a venous leg ulcer to heal. Arch Dermatol. 1999;135(8):920-6.

Fernandes ARC, Peçanha PC, Turrini E, Natour J. Avaliação por imagem do pé diabético. Rev Bras Reumatol. 2001;41(5):305-8.

Rocha Júnior AM, Vieira BJ, Andrade LC, Aarestrup FM. Low-level laser therapy increases transforming growth factor-β2 expression and induces apoptosis of epithelial cells during the tissue repair process. Photomed Laser Surg. 2009;27(2):303-7.

Viegas VNO, Abreu ME, Viezzer C. Effect of low-level laser therapy on inflammatory reactions during wound healing: comparision with meloxicam. Photomed Laser Surg. 2007;25(6):467-73.

Rocha Júnior AM, Oliveira RG, Farias RE, Andrade LCF, Aarestrup FM. Modulation of fibroblast proliferation and inflammatory response by low-intensity laser therapy in tissue repair process. An Bras Dermatol. 2006;81(2):150-6.

Weis LC, Arieta A, Souza J, Guirro R. Utilização do laser de baixa potência nas clínicas de fisioterapia de Piracicaba, SP. Fisioter Bras. 2005;6(2):124-9.

Buschard K, Hanspers K, Fredman P, Reich EP. Treatment with sulfatide or its precursor, galactosylceramide, prevents diabetes in NOD mice. Autoimmunity. 2001;34(1):9-17.

Leiter EH, von Herrath M. Animal models have little to teach us about type 1 diabetes: 2. In opposition to this proposal. Diabetologia. 2004;47:1657-60.

Homo-Delarche F. Is pancreas development abnormal in the non-obese diabetic mouse, a spontaneous model of type I diabetes?. Braz J Med Biol Res. 2001;34:437-47.

Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets?. Nat Med. 1999;5(6):601-4.

Baliga RS, Chaves AA, Jing L, Ayers LW, Bauer JA. AIDS-related vasculopaty: evidence for oxidative and inflammatory pathways murine and human AIDS. Am J Physiol Heart Circ Pysiol. 2005;289(4):H1373-80.

Suschek CV, Schnorr O, Kolb-Bachofen V. The role of iNOS in chronic inflammatory process in vivo: is it damage-promoting, protective, or active at all?. Curr Mol Med. 2004;4(7):763-75.

Batista AC, Silva TA, Chun JH, Lara VS. Nitric oxide synthesis and severity of human periodontal disease. Oral Dis. 2002;8(5):254-60.

Bezerra MM, Lima V, Alencar VB. Selective cyclooxigenase-2 inhibition prevents alveolar bone loss in experimental periodontitis in rats. J Periodontol. 2000;71(6):1009-14.

Boulton AJM. The diabetic foot: an update. Foot Ankle Surg. 2008;14(3):120-4.

Wu SC, Jensen JL, Weber AK, Robinson DE, Armstrong DG. Use of pressure offloading devices in diabetic foot ulcers: do we practice what we preach?. Diabetes Care. 2008;31(11):2118-9.

Chen MC, Lee SS, Hsieh YL, Wu SJ, Lai CS, Lin SD. Influencing factors of outcome after lower-limb amputation: a five-year review in a plastic surgical department. Ann Plast Surg. 2008;61(3):314-8.

Lincoln NOB, Radford KA, Game FL, Jeffcoate WJ. Education for secundary prevention of foot ulcers in people with diabetes: a randomised controlled trial. Diabetologia. 2008;51(11):1954-61.

Gardner SE, Frantz RA. Wound bioburden and infection-related complications in diabetic foot ulcers. Biol Res Nurs. 2008;10(1):44-53.

Rocha Júnior AM, Vieira BJ, Andrade LCF, Aarestrup FM. Effects of the low-level laser therapy on the evolution of the wound healing in human: the contribution of in vitro and in vivo experimental studies. J Vasc Bras. 2007;6(3):258-66.

Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738-46.

Thomas DW, O'Neill ID, Harding KG, Shepherd JP. Cutaneous wound healing: a current perspective. J Oral Maxilofac Surg. 1995;53(4):442-7.

Murphy MO, Ghosh J, Fulford P. Expression of growth factors and growth factor receptor in non-healing and healing ischaemic ulceration. Eur J Vasc Endovasc Surg. 2006;31(5):516-22.

Leung MC, Lo SC, Siu FK, So KF. Treatment of experimentally induced transient cerebral ischemia with low energy inhibits nitric oxide synthase activity and un-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med. 2002;31(4):283-8.

Wu XY, Yang YM, Guo H, Chang Y. The role of connective tissue growth factor, transforming growth factor beta 1 and Smad signaling pathway in cornea wound healing. Chin Med J (Engl). 2006;119(1):57-62.

Cipollone F, Fazia M, Mincione G. Increased expression of transforming growth factor-β 1 as a stabilizing factor in human atherosclerotic plaques. Stroke. 2004;35(10):2253-7.

Ihn H. Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol. 2002;14(6):681-5.

Maier P, Broszinski A, Heizmann U, Boehringer D, Reinhard T. Determination of active TGF-beta2 in aqueous humor prior to and following cryopreservation. Mol Vis. 2006;12:1477-82.

Yasuda K, Aoshiba K, Nagai A. Transforming growth factor-beta promotes fibroblast apoptosis induced by H2O2. Exp Lung Res. 2003;29(3):123-34.

Bernasconi P, Torchiana E, Confalonieri P. Expression of TGF-beta 1 in dystrophic patient muscles correlates with fibrosis: Pathogenetic role of a fibrogenic cytokine. J Clin Invest. 1995;96(2):1137-44.

Salvemini D. Regulation of cyclooxigenase enzymes by nitric oxide. Cell Mol Life Sci. 1997;53(7):576-82.

Lohinai Z, Stachlewitz R, Székely AD, Fehér E, Dézsi L, Szabó C. Evidence for the expression of cyclooxigenase-2 enzyme in periodontitis. Life Sci. 2001;70(3):279-90.

Rabelo SB, Villaverde AB, Nicolau R, Salgado MC, Melo MS, Pacheco MT. Comparison between wound healing in induced diabetic and nondiabetic rats after low-level laser therapy. Photomed Laser Surg. 2006;24(4):474-9.

Byrnes KR, Barna L, Chenault VM. Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes. Photomed Laser Surg. 2004;22(4):281-90.

Demir H, Balay H, Kirnap MA. A comparative study of the effects of electrical stimulation and laser treatment on experimental wound healing in rats. J Rehabil Res Dev. 2004;41(2):147-54.

5ddd2d160e88255f631da3e9 jvb Articles
Links & Downloads

J Vasc Bras

Share this page
Page Sections